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Abstract
We study the effect of a single excluded site on the diffusion of a particle
undergoing a random walk in a d-dimensional lattice. The determination of the
characteristic function allows us to find explicitly the asymptotical behaviour
of physical quantities such as the particle average position (drift) 〈�x〉(t) and the
mean square deviation 〈�x2〉(t) − 〈�x〉2(t). In contrast to the one-dimensional
case, where 〈�x〉(t) diverges at infinite times (〈�x〉(t) ∼ t1/2) and where the
diffusion constant D is changed due to the impurity, the effects of the latter
are shown to be much less important in higher dimensions: for d � 2, 〈�x〉(t)
is simply shifted by a constant and the diffusion constant remains unaltered
although dynamical corrections (logarithmic for d = 2) still occur. Finally, the
continuum space version of the model is analysed; it is shown that d = 1 is
the lower dimensionality above which all the effects of the forbidden site are
irrelevant.

PACS numbers: 0540F, 0230, 0550

1. Introduction

Interactions between diffusing particles are expected to play an important role in many systems
of physical interest (zeolites [1], biological membranes [2, 3] and one-dimensional hopping
conductivity [4]), especially in low dimensions and even with short-range interactions. For
d = 1, the case of a contact interaction has been extensively studied in the past, following the
pioneering paper by Harris [5] on the so-called tracer problem, first showing that the mean-
square displacement 〈x2〉 increases as t1/2 at large times. This result was also obtained by van
Beijeren et al [6] and, more recently, by Rödenbeck et al [7]; these authors indeed solve the
full N -particle problem for an arbitrary initial condition and recover Harris’s result by going to
the N → +∞ limit. Still in the case of a zero-range repulsive interaction, asymptotic results
(transport coefficients and distribution laws) in the extreme case of a finite-N compact initial
cluster have been obtained in [8], where the relation with the theory of extreme events was
also discussed [9].
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392 N Martzel and C Aslangul

Obviously, the effects of short-range interactions are expected to become less and less
important in higher dimensions (on the other hand, the interplay between interaction range
and space dimensionality remains, as far as we know, an open question). In this paper,
we address the simplest problem, namely that of two particles with a contact interaction
undergoing a d-dimensional lattice random walk. After transforming to the centre-of-mass
frame, this essentially reduces to the Brownian motion of a single particle subjected to an
isolated reflecting barrier. The equations for the general d-dimensional case are given below
and, among other things, allow us to show that d = 1 is indeed the marginal dimensionality
above which the random walk is unaffected by the presence of the localized impurity in the
continuous version of the model; by this, it is meant that transport coefficients, as deduced
from the dominant term in the asymptotic regime of physical quantities, are the same with and
without impurity for d > 1. Nevertheless, corrections still occur in the lattice model; these
corrections, less and less relevant as d increases, basically display an ad behaviour for d > 1,
where a denotes the lattice spacing.

This paper is organized as follows. We first write down the basic equations for any
dimension d and give the expression for the Laplace transform of the generating function
giving by derivations all the moments of the particle coordinate in the lattice. We then analyse
this general result, retrieving well known results for the d = 1 case. Subsequently, we examine
in detail the two-dimensional case, which exhibits lattice-dependent logarithmic corrections,
and give the main results for the d > 2 case. Even in such high dimensions, the presence of
the forbidden site has consequences for the asymptotical dynamics: the final average particle
position displays a shift δxf , which scales as adx−d+1

0 , where x0 is the distance between the
starting point of the particle and the exclusion site. Finally, the space-continuous version
solution is written in full, showing that the moment-generating function is, in this limit,
insensitive to the presence of the excluded site as long as the dimensionality d is strictly
greater than one.

2. Basic equations for the d-dimensional lattice walk

In the following, we consider a particle undergoing a random walk in the viscous limit on a
d-dimensional hypercubic lattice having a forbidden site. Denoting by �ep the unit-vector in
the pth direction of the lattice, an arbitrary site of the lattice is fully specified by its vector
�n = ∑d

p=1 np�ep; the excluded site is located at the origin. Let P(�n, t) be the probability of
finding the particle at site �n at time t . In the continuous-time description, it is readily seen that
the time evolution of P(�n, t) is governed by the following master equation:

d

dt
P (�n, t) = W [1 − δ(�n, �0)]

∑
ε=±1

d∑
p=1

[1 − δ(�n + ε�ep, �0)][P(�n + ε�ep, t) − P(�n, t)] (1)

where W denotes the probability per unit time of jumping from one site to any of its nearest
neighbours; in (1), δ(�n, �m) is equal to unity if �n = �m and vanishes otherwise; obviously,
Ṗ (�n = 0, t) = 0 at all times. The easiest way to solve this problem is to deal with the
characteristic function of the probability distribution:

ψ( �φ, t) =
∑

�n
ei �φ·�nP (�n, t) (2)

which allows us to find the probability function P by the inverse formula:

P(�n, t) =
∫

ddφ e−i �φ·�nψ( �φ, t) (3)
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where φp = �φ · �ep and where
∫

ddφ means (2π)−d
∫ +π
−π

dφ1
∫ +π
−π

dφ2 . . .
∫ +π
−π

dφd . Multiplying

both sides of (1) by ei �φ·�n and summing over �n, one readily obtains

∂

∂t
ψ( �φ, t) = 2W

d∑
p=1

(cosφp − 1)ψ( �φ, t) + W
∑
ε=±1

d∑
p=1

(eiεφp − 1)

×
∫

ddφ′ (e−iεφ′
p − 1)ψ( �φ′, t). (4)

For the sake of simplicity, the initial position of the walker is chosen to be �x0 = n0a�e1. With
this condition, and since there is no external bias, the probability distribution is invariant under
a mirror transformation through any plane perpendicular to �ep with p = 1. In addition, the
quantities

∫
ddφ′ cosφ′

pψ( �φ′, t), p = 1, are all equal. Introducing the Laplace transform of

ψ( �φ, t):

ψ̃( �φ, z) =
∫ +∞

0
dt e−ztψ( �φ, t) (5)

one readily obtains(
z + 2W

d∑
p=1

(1 − cosφp)

)
ψ̃( �φ, z) = ψ0 + 2W

d∑
p=2

(cosφp − 1)
∫

ddφ′ (cosφ′
p − 1)

×ψ̃( �φ′, z) + 2W
∫

ddφ ′[(cosφ1 − 1) cosφ′
1 + sin φ1 sin φ′

1]ψ̃( �φ′, z) (6)

where ψ0 ≡ ψ( �φ, 0) = ein0φ1 . Equation (6) is a homogeneous separable Fredholm system,
and can be solved by quadratures (see appendix A), yielding the expression for ψ̃( �φ, z) (see
equation (A.8)). For further reference, we explicitly write down the Laplace transforms of the
average coordinate and mean-square displacement:

〈x̃p〉(z) = −ia
∂ψ̃( �φ, z)

∂φp

∣∣∣∣∣ �φ=�0
〈x̃2

p〉(z) = −a2 ∂2ψ̃( �φ, z)
∂φ2

p

∣∣∣∣∣ �φ=�0
. (7)

With the solution given by (A.8), one precisely has

〈x̃p〉(z) = δp1
a

z
[n0 − iS̃1(Z)] (8)

〈�̃x2〉(z) = a2

z

[
d

Z
+ n2

0 + C̃1(Z) + (d − 1)C̃(Z)

]
(9)

where Z = z/(2W) and where the functions S̃1, C̃1 and C̃ are defined in appendix A. In
the next sections, we shall find the long-time behaviour of these quantities according to the
dimensionality d , by analysing their small-Z expansions (Z � 1 ⇐⇒ t � W−1).

3. The one-dimensional case

The reduced problem is here simply the one-dimensional diffusion of a particle subjected to
a reflecting barrier. Although the result is well known, we shall discuss it to stress the main
difference between this case and that of larger dimensionality. For d = 1 the relevant C̃1

function (A.4) greatly simplifies (C̃1 = βn0/(1 − a1 −β1)), whereas S̃1 is formally unchanged
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and still given by (A.4). Let first us discuss the drift term, given by (8). By using [10]∫ ∞

0
dx e−αxIn(x) = 1(

α +
√
α2 − 1

)n √
α2 − 1

∫ ∞

0
dx x−1e−αxIn(x) =

(
α − √

α2 − 1
)n

n

(10)

we find that γn (introduced in (A.7)) is well defined for all z,Rz � 0 and indeed has a finite
limiting value, namely γn(z = 0) = 1; this is one peculiarity of the one-dimensional case, for
which γn � 1−√

2Z at small Z, so that S̃1 diverges in the limit Z → 0. In higher dimensions,
the modulus of γn is always strictly smaller than unity for all Z, so S̃1 no longer diverges in
the limit Z → 0. This property is crucial since it drastically changes the behaviour of the drift
term according to the dimensionality, setting a marked difference between the cases d = 1 and
d > 1 (see also section 5, where the continuum limit is analysed). This fact points to d = 1
as being the marginal dimension for the drift term. A detailed calculation yields

S̃1(z) � i

{
1√
2Z

+
1

2
− n0 +

[
n0

2
(n0 − 1) − 1

8

]√
2Z

}
. (11)

Similarly,

C̃1(z) � 1√
2Z

+
1

2
− n0 +

[
n0

2
(n0 − 1) − 3

8

]√
2Z. (12)

Using (11) and (12), the small-z expansions of 〈x̃1〉(z) and 〈x̃2
1 〉(z) can now be written out.

Performing then the Laplace inversion yields the following asymptotic expansions:

〈x1〉(t) ∼ 2a

√
Wt

π
+
a

2
+
(2x0 − a)2

8a
√
πWt

+ O(t−1) (13)

〈x2
1 〉(t) ∼ 2a2Wt + 2a2

√
Wt

π
+

(
x2

0 − ax0 +
a2

2

)

+
1

8
(4x2

0 − 4ax0 − 3a2)
1√
πWt

+ O(t−1). (14)

Note that the initial condition x0 does not appear in the two first-dominant terms. The mean
square deviation for the coordinate x1 results:

!x2
1 (t) ≡ 〈x2

1 〉(t) − [〈x1〉(t)]2 ∼ 2

(
1 − 2

π

)[
a2Wt +

1

2

(
x0 − a

2

)2
]

+ O(t−1). (15)

The continuum limit is obtained from the lattice model by taking the limit W → ∞,
a → 0, n0 → +∞ with a2W = D and n0a = x0 finite; performing this, one finds

〈x1〉(t) ∼ 2

√
Dt

π
+

x2
0

2
√
πDt

+ O(t−1) !x2
1 (t) ∼ 2

(
1 − 2

π

)(
Dt +

x2
0

2

)
+ O(t−1).

(16)

Note that the continuous limit strongly modifies the asymptotic expansions: in this limit, the
first sub-dominant term of the lattice model drops out and the first relative corrections to the
asymptotic leading term are O(t−1) instead of O(t−1/2) in the lattice version. From another
point of view, comparison with (14) and (13) shows that the first lattice corrections vanish as
the first power of the lattice constant a.

The above expressions, obtained as the continuous limits of the lattice model, can be
compared to the well known results directly obtained in the continuous framework. For a
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particle subjected to a reflecting barrier and starting a distance x0 > 0 away, an elementary
calculation yields the moment-generating function in the continuous version, which reads

ψ(k, t) = 1
2 [ψ+(k, t) + ψ−(k, t)]

ψ±(k, t) =
[

1 + #

(
± x0√

4Dt
+ ik

√
Dt

)]
e−Dk2t±ikx0

(17)

where # is the error function [10]. By successive derivations at k = 0, the two first moments
result:

〈x1〉(t) = x0#

(
x0√
4Dt

)
+

√
4Dt

π
e−x2

0/(4Dt) 〈x2
1 〉(t) = 2Dt + x2

0 . (18)

These expressions are exact for all t ; by an expansion at large times, they precisely
reproduce (16), as they must.

4. The case d � 2

The expected irrelevance of the forbidden site as dimension is increased will now be explicitly
displayed. Among other things, it will be seen that, for d = 2, 〈�x2〉 and!�x2 contain logarithmic
corrections to the ‘bare’ diffusive regime, which become constant in time for d > 2. These
results allow us to state that d = 2 is indeed the marginal dimension for the diffusion constant
characterizing the dominant term of the asymptotic behaviour. On the other hand, a permanent
shift of the coordinate persists for any d , even at very large times.

Let us begin with the average coordinate 〈x1〉. In contrast to the case d = 1, the integral
γ1 is always strictly smaller than unity, since e−(Z+1)xIn(x) < 1 for all Z and x real. Using
results given in appendix B, one eventually obtains the following expression for the Laplace
transform of the average coordinate valid for |z| � W :

〈x̃1〉(z) � x0

z

4 + (2/n2
0) − (n0 − 1)Z lnZ

4 − n0Z lnZ
(19)

which gives

〈x1〉(t) ∼
(
x0 +

a2

2x0

)[
1 − 1

16Wt

]
+ · · · ≡ x0 + δx(t). (20)

The final value of the average coordinate is thus simply shifted by δxf = a2/(2x0), all the
more since the latter starts close to the forbidden site. As an illustration we show in figure 1
the analytical (solid curve) result for the final shift, compared with the numerical calculation
(dashed curve), in the case n0 = 1. Analytical results are those of asymptotic formula (20),
whereas numerical results come from direct computer simulation of a bi-dimensional lattice
random walk with a forbidden site. The second moment can be obtained from (A.4), (A.5)
and (9). Using the results of appendix B,

〈�̃x2〉(z) � 1

z

[
4a2W

z
+ x2

0 +
(Z + 2)an0(Z, 2)

1 − Za1(Z, 2)

]
(21)

〈�̃x2〉(z) � 1

z

[
4a2W

z
+ x2

0 − a2

π
ln

z

2W

]
. (22)

Laplace inversion gives the dominant behaviour at large times:

〈�x2〉(t) ∼ 4a2Wt + x2
0 +

a2

π
ln 2Wt + · · · . (23)
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Figure 1. Comparison for the final shift coordinate δxf between analytical (solid curve) and
numerical results (dashed line), for n0 = 1 and d = 2. The unit of time is W−1.

From (20) and (23), one finds the mean square deviation:

!�x2(t) ∼ 4a2Wt +
a2

π
ln 2Wt. (24)

At this point, we see here that the diffusion constant, defined usually as

D = lim
t→+∞

1

2dt
!�x2(t) (25)

is now unchanged by the impurity but a logarithmic correction occurs in the sub-dominant
term, which can be viewed as a reminder of the change of D when d = 1: the diffusion
constant is unchanged but the first correction diverges infinitely slowly at infinite times. This
is clearly a marginal correction: at times large enough, the two-dimensional diffusive regime
is the same with or without impurity.

In the continuous limit, the expressions (20) and (24) give

〈x1〉(t) ∼ x0 + O
(
a2

x0

)
!�x2(t) ∼ 4Dt + O

(
a2 ln

2a2

Dt

)
. (26)

Let us now turn to the case d > 2, for which all the integrals occurring in the subdominant
terms are strictly convergent for all Z,RZ � 0, whereas the dominant terms are exactly the
same as in the absence of a localized impurity (indeed, all the integrands behave at most as
x−d/2 at infinity). More precisely, one finds

〈x̃1〉(z) � x0

z

[
1 +

ξ(n0, d)

1 − ξ(1, d)

]
(27)

and

〈�̃x2〉(z) � 1

z

(
2da2W

z
+ A

)
(28)

where A is a constant and where the function ξ(n, d) is defined in (B.13). This results in

〈x1〉(t) ∼ x0

[
1 +

ξ(n0, d)

1 − ξ(1, d)

]
!�x2(t) ∼ 2da2Wt + A′ (29)

where A′ is another constant. The correction to unity in the brackets clearly represents the
microscopic exclusion phenomemon, which again gives a final shift of the particle position,
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due to the presence of the impurity. As shown in appendix B, (B.17), the function ξ(n0, d) is
approximately given by

ξ(n, d) � (
√
πn)−d'(d/2) (n � 1) (30)

where ' denotes the Euler gamma function. Equations (27) and (30) show that the final
coordinate shift has an algebraic behaviour (δx ∼ adx0

−d+1
) as a function of the distance

between the starting point and the forbidden site. On the other hand, the subdominant term in
!�x2 turns out to be now a constant in time, instead of diverging logarithmically as is the case
for d = 2.

5. The space continuous limit

Here and there in the above, we gave the continuum limits of the first moments, in order
to emphasize the corrections in the asymptotic regimes which are due to the lattice. In this
section, we explicitly show that the d > 1 random walk in continuum space is, as a whole,
unaffected at all times by the local impurity. The central quantities S̃1 and C̃p only depend
on the reduced variable Z = za2/(2D), showing that the continuum limit embodies the limit
Z → 0. Let us first consider the behaviour of S̃1; using the results of appendix B, we find at
the lowest order in Z

S̃1(Z) � i
π−d/2'(d/2)n−(d−1)

0

[1 − π− d
2 '(d/2)] − Fd(Z)

(31)

where

F1(Z) � −
√

2Z F2(Z) � 1

2π
Z logZ Fd>2(Z) � C × Z (32)

where C is a constant. Here we clearly see that for the drift term the marginal dimension is
d = 1: the term S̃1 is divergent at lowZ only for d = 1 and remains finite in this limit for d > 1.
Since the drift only depends on S̃1, we can conclude that, for d = 1, 〈x1〉(t)− x0 = 2

√
Dt/π ,

whereas for higher dimension, 〈x1〉 − x0 vanish as ad in the continuum limit.
Generally speaking, it is easy to obtain the continuous limit of the characteristic

function (A.8). A little algebra yields

ψ̃(k, z) = 1

z + Dk2

(
ψ0 + ik

√
D

z
+ O(a)

)
(d = 1) (33)

ψ̃(�k, z) = 1

z + Dk2
(ψ0 + O(ad)) (d > 1). (34)

Thus, when the continuum limit is performed, all the additional terms arising from the excluded
site strictly vanish except for d = 1. As a whole, it turns out that d = 1 is the marginal
dimension of the problem in its space-continuous version.

As a final remark, let us note that this paper indeed solves the problem of two particles
with a hard-core mutual repulsion (exclusion process), each of them having the same diffusion
constant D. By separating the free diffusion of the centre of mass—which undergoes a normal
diffusion with a constant D/2—one is left with a reduced particle with a constant 2D and
subjected to a static excluded point, which is the problem fully solved above.

6. Conclusions

We have studied the effect of a forbidden site on the random walk on a hypercubic lattice
according to the dimensionalityd of the latter. For the mean square dispersion of the coordinate,
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the diffusion constant D defining the asymptotical dynamics is altered only when d = 1; for
d = 2, logarithmic corrections ∼ ln t occur, which become constant in time when d > 2,
whereas D is unchanged. In contrast, the average coordinate is sensitive to the impurity in all
cases. For d = 1, it goes to infinity at large times (〈x〉(t) ∼ t1/2); for d � 2, its limiting value
is always finite and displays a shift δxf ∝ adx−d+1

0 as compared to its initial value x0.
As expected, these effects are found to be less important in the continuous-space version

of the problem. By considering the generating function of the moments, it was shown that
the impurity is totally irrelevant except for d = 1: as long as d > 1, the continuous-space
generating function is exactly the same as for the ordinary random walk (the above-mentioned
corrections for d � 2 are thus lattice effects). This allows us to state that d = 1 is the marginal
dimension for the continuous-space problem.

All these results were obtained by assuming a contact interaction between the walker and
the impurity. Obviously enough, it can be anticipated that a long-range interaction strongly
alters the present conclusions. To our knowledge, the interplay between the dimensionality
and the interaction range is, currently, an open question that clearly deserves further study.
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Appendix A. Solution of the Fredholm equation

Equation (6) is a homogeneous separable Fredholm system and can be solved by quadratures.
We set

G( �φ, z) = 1

z + 2W
∑d

p=1(1 − cosφp)
(A.1)

and introduce the auxiliary dimensionless quantities

C̃p(z) = 2W
∫

ddφ cosφpψ̃( �φ, z) S̃1(z) = 2W
∫

ddφ sin φ1ψ̃( �φ, z). (A.2)

Due to the chosen initial condition, the (d − 1) functions C̃p, p = 2, 3, . . . , d, are all equal
and are simply denoted by C̃ in the following. Using the standard procedure for solving such
a separable Fredholm equation, C̃p and S̃1 are seen to be given by an inhomogeneous system,
which can be readily written and solved. Then, using the identity u−1 = ∫ +∞

0 dx e−ux,Ru > 0,
it turns out to be that all these quantities can be expressed in terms of integrals involving the
Bessel functions of the second kind In. More precisely,

an(Z, d) =
∫ +∞

0
dx e−(Z+d)xIn(x)I

d−1
0 (x)

bnn′(Z, d) =
∫ +∞

0
dx e−(Z+d)xIn(x)In′(x)I d−1

0 (x).

(A.3)

A somewhat lengthy but straightforward calculation gives

C̃1 = 1

D
[1 + a1 − β1 − (d − 2)(α11 − a1)]βn0 + (d − 1)(α11 − a1)αn01]

S̃1 = iγn0

1 − γ1

(A.4)

C̃p =1 ≡ C̃ = 1

D
[(1 + a1 − β1)αn01 + (α11 − a1)βn0 ]. (A.5)
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The various quantities appearing in these expressions are defined as follows:

D = [1 + a1 − β1 − (d − 2)(α11 − a1)](1 + a1 − β1) − (d − 1)(α11 − a1)
2] (A.6)

βn = 1
2 [an−1 + an+1] γn = 1

2 [an−1 − an+1] αnn′ = bnn′(Z, d − 1). (A.7)

With these definitions, the solution of the central equation (6) is written

ψ̃( �φ, z) = G( �φ, z)
[
ψ0 + C̃(z)

d∑
p=2

(cosφp − 1) + C̃1(z)(cosφ1 − 1) + S̃1(z) sin φ1

]
(A.8)

and is the starting point of the analysis undertaken in this paper.

Appendix B. Asymptotical behaviour of many-Bessel-function integrals

In this paper we repeatedly have to estimate integrals of the kind

I (Z, d, �n,m) =
∫ ∞

0
dx e−(Z+d)xIn1(x) . . . Ind (x)x

m (B.1)

in the limit Z � 1, where In(x) denotes a modified Bessel function and �n = {n1, . . . , nd}.
When Z = 0, no singularity arises from the lower bound provided that n1 + · · · +nd +m > −1
(this is always the case in this paper). On the other hand (x → ∞), the integral is finite for
m < (d/2)− 1. Our goal is to obtain the asymptotical behaviour of I (Z, d, �n,m) for large ni
(but numerical checks show that some of the following analytical results still hold true even
for n2 = -n2

i = 1).
In particular, when I (Z, d, �n,m) is divergent, the knowledge of the nature of the

divergence for Z ∼ 0 is required. Let us first introduce the generalized integrals

Ig(Z, d, �n,m,ω) =
∫ ∞

0
dx e−(Z+d)xe−ω/xIn1(x) . . . Ind (x)x

m (B.2)

which share the same diverging properties as I when Z � 1 and allow us to find the latter by
one or other of the following procedures:

I (Z, d, �n,m) = lim
ω→0

Ig(Z, d, �n,m,ω) (B.3)

Ig(Z, d, �n,m − 1, ω) = − ∂

∂ω
Ig(Z, d, �n,m,ω) (B.4)

Ig(Z, d, �n,m + 1, ω) = − ∂

∂Z
Ig(Z, d, �n,m,ω). (B.5)

Let us first examine the case where d is even (d = 2p). The first non-logarithmically
diverging integral is Ig(Z, 2p, �n, p, ω). The divergence near Z = 0 arises from large values
of x. In order to obtain for our purpose a convenient asymptotical form of Bessel functions, we
first use an integral representation of the latter, and approximate it by using a stationary-phase
argument when both n and x are much greater than unity:

In(x) = 1

2π

∫ +π

−π

dθ ex cos θ+inθ � 1

2π

∫ ∞

−∞
dθ ex(1− 1

2 θ
2)+inθ

= 1√
2πx

e x− n2

2x (x, n � 1). (B.6)

This approximation being made, all the integrals Ig and I only depend on the length of the
vector �n, simply denoted by n in the following. Using the approximate expression (B.6), we
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obtain with the help of [10]

Ig(Z, 2p, �n, p, ω) � (2π)−p

∫ ∞

0
dx e−Zxe− ω+n2/2

x

= (2π)−p

√
4(ω + n2/2)

Z
K1

(√
4(ω + n2/2)Z

)
(B.7)

K1 denoting the Bessel function of the second kind.
For d odd (d = 2p + 1) we choose Ig(Z, 2p + 1, �n, p, ω) as a generator; in the same way

as above we find

Ig(Z, 2p + 1, �n, p, ω) � (2π)−(p+ 1
2 )

∫ ∞

0
dx e−Zx2

e− ω+n2/2
x2

= (2π)−(p− 1
2 )

√
π

Z
e−2

√
Z(ω+n2/2). (B.8)

Expressions (B.7) and (B.8) are correct in the limit Z � 1 and n2 � 1. Using then (B.4)
and (B.5), we are now able to calculate the asymptotical behaviour of the whole family of I
integrals.

As an example, let us consider I (Z, 2, {0, n},−1), which occurs in the calculation of the
average coordinate for d = 2. Explicitly, one has

I (Z, 2, {0, n},−1) =
∫ ∞

0
dx x−1e−(Z+2)xI0(x)In(x) (B.9)

and the method sketched above yields

I (Z, 2, {0, n},−1) � 1

πn2
+

1

2π
Z lnZ (Z � 1, n � 1). (B.10)

We numerically checked the value of the Z-independent constant; it turns out that for n � 5,
1/(πn2) gives the correct value with a relative error smaller than ∼10−3. On the other
hand, we found no simple way to numerically check the validity of the first-order term in
the expansion (B.10), but one can analytically prove that it is correct for I (Z, 2, {0, 1},−1).
Indeed, the integral I (Z, 2, {0, 1}, 1) is computed in [10]:

I (Z, 2, {0, 1}, 1) = 1

2π

[
Z′

Z′2 − 1
E

(
1

Z′

)
− 1

Z′ K
(

1

Z′

)]
(B.11)

where K and E are the complete elliptic functions of the first and the second kind respectively,
and where Z′ = 1 + Z/2. After a little algebra, we find

lim
Z→0

ZI (Z, 2, {0, 1}, 1) = 1

2π
. (B.12)

Setting

ξ(�n, d) = I (0, d, �n,−1) (B.13)

equation (B.12) entails

lim
Z→0

I (Z, 2, {0, 1},−1) = ξ({0, 1}, 2) +
1

2π
Z lnZ + C1Z + · · · (B.14)

which for n = 1 is in agreement with (B.10).
As an application, let us find the asymptotical behaviour of the function ξ(n, d) defined

by (B.13), which is strongly related to the coordinate shift in any dimension. For d = 2p, we
find (remember that n = |�n|)

ξ(n, 2p) = (−1)p+1 ∂p+1

∂ωp+1
Ig(Z, �n, 2p, p, ω)

∣∣∣∣
Z=ω=0

� π−p(p − 1)!n−2p (B.15)
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whereas for d = 2p + 1, one has

ξ(n, 2p + 1) = (−1)p+1 ∂p+1

∂ωp+1
Ig(Z, �n, 2p + 1, p, ω)

∣∣∣∣
Z=ω=0

� π−p 1.3.5 . . . (2p − 1)

2p
n−(2p+1). (B.16)

These two definitions turn in fact into only one:

ξ(n, d) � π− d
2 '(d/2)n−d (B.17)

' still denoting the Euler gamma function. It is worth noting that this asymptotical behaviour,
a priori only valid for |�n| � 1, is very rapidly convergent and actually holds true even for
rather small values of |�n|, as shown by a few numerical checks.
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